Refine your search:     
Report No.
 - 
Search Results: Records 1-18 displayed on this page of 18
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Current status and prospects of technology development for hydrogen production using high temperature gas-cooled reactor

Kubo, Shinji

Suiso Enerugi Shisutemu, 48(2), p.126 - 132, 2023/06

no abstracts in English

Journal Articles

Development of highly efficient hydrogen production process by thermochemical method

Inagaki, Yoshiyuki

Suiso No Seizo, Yuso, Chozo Gijutsu To Zairyo Kaihatsu Jireishu, p.59 - 65, 2019/04

This report describes the outline of the thermochemical hydrogen production process by water splitting related to technologies on production, transport and storage of hydrogen. The report explains the principle of thermochemical process as well as the research and development status on Iodine-Sulfur (IS) process performed in JAEA. As energy for IS process, the outline and the domestic and abroad development status of a high temperature gas-cooled reactor is described.

Journal Articles

Development of sulfuric acid decomposer for thermochemical hydrogen production IS process

Terada, Atsuhiko; Ota, Hiroyuki; Noguchi, Hiroki; Onuki, Kaoru; Hino, Ryutaro

Nihon Genshiryoku Gakkai Wabun Rombunshi, 5(1), p.68 - 75, 2006/03

The Japan Atomic Energy Agency has been conducting R&D on high-temperature gas-cooled reactor (HTGR) technology and also on thermo-chemical water splitting hydrogen production technology by using an iodine-sulfur cycle (IS process) in the high temperature engineering test reactor (HTTR) project. The sulfuric acid (H$$_{2}$$SO$$_{4}$$) decomposer is one of the key equipments in the IS process, in which concentrated sulfuric acid is evaporated and decomposed into SO$$_{3}$$ and H$$_{2}$$O with the heat of high temperature helium gas supplied by HTGR. A concept of the decomposer consisting of multi-block-type heat exchanger made of SiC ceramics was proposed, and its feasibility was examined by preliminary analyses of thermal-hydraulic and structural strength and test-fabrication of SiC block components as well as elementary tests of seal performance in SiC blocks and metal flanges.

Journal Articles

Separation technologies on thermochemical water-splitting iodine-sulfur process

Kubo, Shinji; Yoshida, Mitsunori; Sakurai, Makoto*; Tanaka, Kotaro*; Miyashita, Reiko*

Bunri Gijutsu, 35(3), p.148 - 152, 2005/05

no abstracts in English

JAEA Reports

HTTR Workshop, Workshop on Hydrogen Production Technology; July 5-6, 2004, JAERI, Oarai, Japan

Department of HTTR Project; Department of Advanced Nuclear Heat Technology

JAERI-Review 2004-026, 206 Pages, 2004/12

JAERI-Review-2004-026.pdf:14.16MB

no abstracts in English

JAEA Reports

Safety considerations for continuous hydrogen production test apparatus wtih capacity of 50 N-litter hydrogen per hour

Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

JAERI-Tech 2001-032, 63 Pages, 2001/03

JAERI-Tech-2001-032.pdf:4.63MB

no abstracts in English

Journal Articles

Thermochemical cycle for hydrogen production using HTGR

Kubo, Shinji; Nakajima, Hayato; Onuki, Kaoru; Shimizu, Saburo

Dai-7-Kai Doryoku Enerugi Gijutsu Shimpojiumu Koen Rombunshu (00-11), p.293 - 298, 2000/11

no abstracts in English

Journal Articles

Present status and perspective of HTGR development

Miyamoto, Yoshiaki

IES-26, p.118 - 127, 2000/00

no abstracts in English

Journal Articles

Development program on hydrogen production at JAERI

Miyamoto, Yoshiaki; Shiozawa, Shusaku; Ogawa, Masuro; Hada, Kazuhiko

Proc. of the Int. Conf. on Future Nuclear Systems (GLOBAL'99)(CD-ROM), 7 Pages, 1999/00

no abstracts in English

Journal Articles

Overview of HTGR heat utilization system development at JAERI

Miyamoto, Yoshiaki; Shiozawa, Shusaku; Ogawa, Masuro; Akino, Norio; Shimizu, Saburo; Hada, Kazuhiko; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo

IAEA-TECDOC-1056, p.191 - 200, 1998/11

no abstracts in English

Journal Articles

Nuclear heat utilization by HTGR

Miyamoto, Yoshiaki

Dai-36-Kai Genshiryoku Sogo Shimpojiumu Yokoshu, p.37 - 41, 1998/01

no abstracts in English

Journal Articles

Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant

; Kajiyama, Takeyoshi; *; *; *; *

International Journal of Hydrogen Energy, 22(1), p.49 - 56, 1997/00

 Times Cited Count:14 Percentile:67.12(Chemistry, Physical)

no abstracts in English

JAEA Reports

Critical review and discussion on HENDEL demonstration tests for HTTR heat utilization systems

Hino, Ryutaro; Suzuki, Kunihiro; Haga, Katsuhiro; Nekoya, Shinichi; Fukaya, Kiyoshi; Shimizu, Saburo; Onuki, Kaoru; Takada, Shoji; Mogi, Haruyoshi; Sudo, Yukio

JAERI-Review 95-016, 115 Pages, 1995/10

JAERI-Review-95-016.pdf:3.5MB

no abstracts in English

Oral presentation

Massive and efficient H$$_{2}$$ production technology on thermochemical water-splitting iodine-sulfur process

Takegami, Hiroaki; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Myagmarjav, O.; Inagaki, Yoshiyuki; Kubo, Shinji

no journal, , 

A thermochemical water-splitting iodine-sulfur process offers the potential for the mass production of hydrogen at high levels of efficiency. This chemical process uses high-temperature heat sources such as the high-temperature gas-cooled reactors, solar heat, and waste heat. Raw materials of H$$_{2}$$O splits into H$$_{2}$$ and O$$_{2}$$ with combining three chemical reactions using sulfur and iodine compounds. Currently important R&D tasks are to verify integrity of components made of practical-structural materials and stability of hydrogen production operation in the harsh working conditions, and to develop methods for high thermal efficiency. A test facility of hydrogen production was constructed applying corrosion-resistant components developed using industrial materials. The entire process connecting the three process chemical sections was operated in hydrogen production for 31 hours at rate of 20 L / h. Through the operations, technical issues were obtained that prevention of clogging and leakage are important for next longer operation. For improvement of thermal efficiency, membrane technologies have been devised for HI decomposition section, H$$_{2}$$SO$$_{4}$$ decomposition section, and Bunsen reaction section. Permselective membranes (H$$_{2}$$, O$$_{2}$$) and a cation exchange membrane were developed to adopt to membrane reactors which work to increase chemical equilibrium and to reduce processing energy of chemical reactions.

Oral presentation

Patent

水素製造プラント

久保 真治; 田中 伸幸

谷岡 忠輝*; 宇マ谷 雅英*; 水谷 誠*; 清澤 正志*; 福良 孝*; 稲員 大吾*

JP, 2020-044801  Patent licensing information

【課題】水素の製造にあたり、太陽光のエネルギーを有効利用する。 【解決手段】水素製造プラントは、二酸化硫黄と水とヨウ素とを反応させるブンゼン反応設備と、ブンゼン反応設備で生成された硫酸を二酸化硫黄と酸素と水とに熱分解させる硫酸反応設備と、ブンゼン反応設備で生成されたヨウ化水素を水素とヨウ素とに熱分解させるヨウ化水素反応設備と、を備える。硫酸反応設備は、第一蓄熱器と、太陽光を第一蓄熱器に導く第一太陽光ガイド装置と、第一蓄熱器の蓄熱体に蓄えられた熱を利用して、硫酸を熱分解させる硫酸反応器と、硫酸反応器で生成された二酸化硫黄を一時的に蓄える二酸化硫黄タンクと、を有する。ヨウ化水素反応設備は、第二蓄熱器と、太陽光を第二蓄熱器に導く第二太陽光ガイド装置と、第二蓄熱器の蓄熱体に蓄えられた熱を利用して、ヨウ化水素を熱分解させるヨウ化水素反応器と、を有する。

Patent

熱化学水素製造法のISプロセスにおけるプロセス溶液濃度の調整方法及びその装置

久保 真治; 野口 弘喜; 上地 優

今 肇*

JP, 2020-014742  Patent licensing information  Patent publication (In Japanese)

【課題】熱化学水素製造法のIS(ヨウ素硫黄)プロセスにおいて、新たに複雑で高価な設備を追加することなく、極めて簡潔かつ安価な設備によって、水素製造運転中においても連続的にH2Oを選択的に除去することでプロセス溶液濃度を調整する方法及びそのための装置を提供すること。 【解決手段】水素を製造する熱化学水素製造法のISプロセスにおけるプロセス溶液濃度を調整する方法であって、HI-I2-H2O溶液に中濃度硫酸を添加し、さらに混合し、二液相分離現象を利用して、硫酸相とHIx相の二相を形成させた後、HI-I2-H2O溶液中の水分を前記硫酸相中へ移行させた後、前記硫酸相を抜き出す工程を有する。

18 (Records 1-18 displayed on this page)
  • 1